摆动过程中,复摆只受重力和转轴的反作用力,而重力矩起着回复力矩的作用。设质量为m的刚体绕转轴的转动惯量为I,支点至质心的距离为s,则复摆微幅振动的周期如图,式中g为重力加速度。它相当于摆长l=I/ms的单摆作微幅振动的周期。在OC的延长线上取O′点使OO′=l(l称等价摆长)则此点称为复摆的摆动中心。支点和摆动中心可互换位置而不改变复摆的周期。知道T和l,就可由周期公式求出重力加速度g。当复摆受到一个冲量作用时,会在支点上引起碰撞反力。若转轴是刚体对支点的惯量主轴,外冲量垂直于支点和质心的连线OC且作用于摆动中心O′上,则支点上的碰撞反力为零。因此,复摆的摆动中心又称撞击中心。机器中有些必须经受碰撞的转动件,如离合器、冲击摆锤等,为防止巨大瞬时力对轴承的危害,应使碰撞冲击力通过撞击中心。